If (x, y) is the terminal point for for angle t.

- Tangent of angle t: $\tan(t) = \frac{y}{x}$ for $x \neq 0$. Also $\tan(t) = \frac{\sin(t)}{\cos(t)}$ when $\cos(t) \neq 0$.
- Cotangent of angle t: $\cot(t) = \frac{x}{y}$ for $y \neq 0$. Also $\cot(t) = \frac{\cos(t)}{\sin(t)}$ when $\sin(t) \neq 0$.
- Secant of angle t: $\sec(t) = \frac{1}{x}$ for $x \neq 0$. Also $\sec(t) = \frac{1}{\cos(t)}$ when $\cos(t) \neq 0$.
- Cosecant of angle t: $\csc(t) = \frac{1}{y}$ for $y \neq 0$. Also $\csc(t) = \frac{1}{\sin(t)}$ when $\sin(t) \neq 0$.
- Reciprocal identity for Tangent: $\tan(t) = \frac{1}{\cot(t)}$ when $\cot(t) \neq 0$.
- Reciprocal identity for Cotangent: $\cot(t) = \frac{1}{\tan(t)}$ when $\tan(t) \neq 0$.
- Now, you can complete the left table in Question 1.
- Finding Trigonometric Functions of θ
 - Find the reference angle, t, for θ .
 - Use the table of sine/cosine values for $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}$ to find the **absolute value** of the sine and cosine.
 - Subtract/add enough 2π to the angle to find the coterminal angle and its quadrant.
 - Find the sign of the sine and cosine in the correct quadrant.
 - Use the formula for tan, cot, sec and csc to find the other values.
 - That is, $\sin(\theta) = \pm(\sin(t))$ and $\cos(\theta) = \pm(\cos(t))$

Now, you can complete the right table in Question 1.

- **Periodic functions:** A function is periodic if there is a positive number p such that f(t) = f(t+p). That is, the function repeats itself after time p has passed. We call p the period if it is the **smallest** such number.
- Periodic properties of Sine and Cosine:

The function $\sin(t)$ and $\cos(t)$ have period 2π that is $\sin(t) = \sin(t+2\pi)$ and $\cos t = \cos(t+2\pi)$ for all t. We observed that the value of sine and cosine on the circle repeats itself after $2k\pi$ for k an integer.

Optimization with Trigonometric functions: Maximum/minimum value of sin(t) and cos(t) are 1/-1. To find Maximum/minimum of a transformation of sine and cosine function, solve an inequality. Now, you can complete Questions 2 and 3.

Summary of identities

• Pythagorean identity:

$\sin^2(t) + \cos^2(t) = 1$	(Main equation)
$\sin^2(t) = 1 - \cos^2(t)$	(Obvious alternative)
$\cos^2(t) = 1 - \sin^2(t)$	(Obvious alternative)
$\sec^2(t) = \tan^2(t) + 1$	(A derivation: $\underbrace{\frac{\sin^2(t)}{\cos^2(t)}}_{\tan^2(t)} + \underbrace{\frac{\cos^2(t)}{\cos^2(t)}}_{1} = \underbrace{\frac{1}{\cos^2(t)}}_{\cos^2(t)}$)
$\csc^2(t) = 1 + \cot^2(t)$	(Another derivation: $\underbrace{\frac{\sin^2(t)}{\sin^2(t)}}_{1} + \underbrace{\frac{\cos^2(t)}{\sin^2(t)}}_{\cot^2(t)} = \underbrace{\frac{1}{\sin^2(t)}}_{\csc^2(t)}$)

• Even and Odd:

Odd:

sin(-t) = -sin(t) tan(-t) = -tan(t) cot(-t) = -cot(t)csc(-t) = -csc(t)

Even:in(t)cos(-t) = cos(t)an(t)sec(-t) = sec(t)sc(t)sec(-t) = sec(t)

We use these identities to compute different trigonometric values.

1. Complete the table for all trig functions.

t	sin(t)	$\cos(t)$	$\tan(t)$	$\cot(t)$	$\sec(t)$	$\csc(t)$	t	sin(t)	$\cos(t)$	$\tan(t)$	$\cot(t)$	$\sec(t)$	$\csc(t)$
0 π				DNE		DNE	$\frac{3\pi}{2}$			DNE		DNE	
<u></u>													
6							$\frac{5\pi}{2}$						
π							э						
4							7π						
π							6						
3							$\frac{7\pi}{1}$						
π							4						
$\frac{\pi}{2}$			DNE		DNE		π				DNE		DNE
1													

2. Biology (the Predator Prey Model): In many models of population with predator and prey when the population of prey starting to increase, the population of predator increases. After a while, the increase in population of predator causes the population of the prey after a while causes the population of prey to decrease. And the decrease in population of prey causes the decrease in population of predator. This is a cycle that repeats itself and can be modeled by a simple periodic functions such as sine and cosine.

Let $N(t) = 1200\sin(3t) + 2500$ be the population of prey over time. Find the maximum population and length of time between successive periods of maximum population.

3. Biology (Blood Pressure): The equation P(t) = 20sin(2πt) + 100 models the blood pressure for a healthy 20-year old, P, where t represents time in seconds. (a) Find the blood pressure after 15 seconds. (b) What are the maximum and minimum blood pressures?