If (x, y) is the terminal point for for angle t.

- Tangent of angle $t: \tan (t)=\frac{y}{x}$ for $x \neq 0$. Also $\tan (t)=\frac{\sin (t)}{\cos (t)}$ when $\cos (t) \neq 0$.
- Cotangent of angle $t: \cot (t)=\frac{x}{y}$ for $y \neq 0$. Also $\cot (t)=\frac{\cos (t)}{\sin (t)}$ when $\sin (t) \neq 0$.
- Secant of angle $t: \sec (t)=\frac{1}{x}$ for $x \neq 0$. Also $\sec (t)=\frac{1}{\cos (t)}$ when $\cos (t) \neq 0$.
- Cosecant of angle $t: \csc (t)=\frac{1}{y}$ for $y \neq 0$. Also $\csc (t)=\frac{1}{\sin (t)}$ when $\sin (t) \neq 0$.
- Reciprocal identity for Tangent: $\tan (t)=\frac{1}{\cot (t)}$ when $\cot (t) \neq 0$.
- Reciprocal identity for Cotangent: $\cot (t)=\frac{1}{\tan (t)}$ when $\tan (t) \neq 0$.

Now, you can complete the left table in Question 1.

- Finding Trigonometric Functions of θ
- Find the reference angle, t, for θ.
- Use the table of sine/cosine values for $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}$ to find the absolute value of the sine and cosine.
- Subtract/add enough 2π to the angle to find the coterminal angle and its quadrant.
- Find the sign of the sine and cosine in the correct quadrant.
- Use the formula for tan, cot, sec and csc to find the other values.
- That is, $\sin (\theta)= \pm(\sin (t))$ and $\cos (\theta)= \pm(\cos (t))$

Now, you can complete the right table in Question 1.

- Periodic functions: A function is periodic if there is a positive number p such that $f(t)=$ $f(t+p)$. That is, the function repeats itself after time p has passed. We call p the period if it is the smallest such number.
- Periodic properties of Sine and Cosine:

The function $\sin (t)$ and $\cos (t)$ have period 2π that is $\sin (t)=\sin (t+2 \pi)$ and $\cos t=\cos (t+2 \pi)$ for all t. We observed that the value of sine and cosine on the circle repeats itself after $2 k \pi$ for k an integer.

- Optimization with Trigonometric functions: Maximum/minimum value of $\sin (t)$ and $\cos (t)$ are $1 /-1$. To find Maximum/minimum of a transformation of sine and cosine function, solve an inequality. Now, you can complete Questions 2 and 3.

Summary of identities

- Pythagorean identity:

$$
\begin{aligned}
& \sin ^{2}(t)+\cos ^{2}(t)=1 \\
& \sin ^{2}(t)=1-\cos ^{2}(t) \\
& \cos ^{2}(t)=1-\sin ^{2}(t) \\
& \sec ^{2}(t)=\tan ^{2}(t)+1 \\
& \csc ^{2}(t)=1+\cot ^{2}(t)
\end{aligned}
$$

(Main equation)
(Obvious alternative)
(Obvious alternative)
(A derivation: $\underbrace{\frac{\sin ^{2}(t)}{\cos ^{2}(t)}}_{\tan ^{2}(t)}+\underbrace{\frac{\cos ^{2}(t)}{\cos ^{2}(t)}}_{1}=\underbrace{\frac{1}{\cos ^{2}(t)}}_{\sec ^{2}(t)}$)
(Another derivation: $\underbrace{\frac{\sin ^{2}(t)}{\sin ^{2}(t)}}_{1}+\underbrace{\cos ^{2}(t)}_{\cot ^{2}(t)} \underbrace{\csc ^{2}(t)}_{\sin ^{2}(t)})=\frac{1}{\sin ^{2}(t)}$)

- Even and Odd:

Odd:

$\sin (-t)=-\sin (t)$
$\tan (-t)=-\tan (t)$
$\cot (-t)=-\cot (t)$
$\csc (-t)=-\csc (t)$

Even:

$$
\begin{aligned}
& \cos (-t)=\cos (t) \\
& \sec (-t)=\sec (t)
\end{aligned}
$$

We use these identities to compute different trigonometric values.

1. Complete the table for all trig functions.

t	$\sin (t)$	$\cos (t)$	$\tan (t)$	$\cot (t)$	$\sec (t)$	$\csc (t)$
0				DNE		DNE
$\frac{\pi}{6}$						
$\frac{\pi}{4}$						
$\frac{\pi}{3}$						
$\frac{\pi}{2}$						

t	$\sin (t)$	$\cos (t)$	$\tan (t)$	$\cot (t)$	$\sec (t)$	$\csc (t)$
$\frac{3 \pi}{2}$						
$\frac{5 \pi}{3}$			DNE		DNE	
$\frac{7 \pi}{6}$						
$\frac{7 \pi}{4}$						
π						

2. Biology (the Predator Prey Model): In many models of population with predator and prey when the population of prey starting to increase, the population of predator increases. After a while, the increase in population of predator causes the population of the prey after a while causes the population of prey to decrease. And the decrease in population of prey causes the decrease in population of predator. This is a cycle that repeats itself and can be modeled by a simple periodic functions such as sine and cosine.
Let $N(t)=1200 \sin (3 t)+2500$ be the population of prey over time. Find the maximum population and length of time between successive periods of maximum population.
3. Biology (Blood Pressure): The equation $P(t)=20 \sin (2 \pi t)+100$ models the blood pressure for a healthy 20-year old, P, where t represents time in seconds. (a) Find the blood pressure after 15 seconds. (b) What are the maximum and minimum blood pressures?
